Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer.

نویسندگان

  • M A McVoy
  • S P Adler
چکیده

To determine the replicative mechanism for human cytomegalovirus (HCMV) DNA, field inversion gel electrophoresis was used to separate HCMV replicative DNAs during lytic infection. Unit-length circular HCMV genomes lacking terminal restriction fragments were detected starting 4 h after infection even when cells were treated with aphidicolin, phosphonoacetic acid, or cycloheximide. Viral DNA synthesis began 24 h after infection and produced large amounts of high-molecular-weight replicative DNA that was a precursor of progeny genomes. Replicative DNA contained rare terminal restriction fragments, and long-arm termini were much less frequent than short-arm termini. Replicative DNA was not composed of unit-length circles because low-dose gamma irradiation of replicative DNA generated numerous random high-molecular-weight fragments rather than unit-length molecules. PacI digestion of replicative DNA from a recombinant HCMV with two closely spaced PacI sites revealed that replicative DNA is concatemeric and genome segment inversion occurs after concatemer synthesis. These results show that after circularization of the parental genome, DNA synthesis produces concatemers and genomic inversion occurs within concatemeric DNA. The results further suggest that concatemers acquire genomic termini during the cleavage/packaging process which preferentially inserts short-arm termini into empty capsids, causing a predominance of short-arm termini on the concatemer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ends on herpesvirus DNA replicative concatemers contain pac2 cis cleavage/packaging elements and their formation is controlled by terminal cis sequences.

Herpesviruses have large double-stranded linear DNA genomes that are formed by site-specific cleavage from complex concatemeric intermediates. In this process, only one of the two genomic ends are formed on the concatemer. Although the mechanism underlying this asymmetry is not known, one explanation is that single genomes are cleaved off of concatemer ends in a preferred direction. This implie...

متن کامل

Non-Homologous End Joining Plays a Key Role in Transgene Concatemer Formation in Transgenic Zebrafish Embryos

This study focused on concatemer formation and integration pattern of transgenes in zebrafish embryos. A reporter plasmid based on enhanced green fluorescent protein (eGFP) driven by Cytomegalovirus (CMV) promoter, pCMV-pax6in-eGFP, was constructed to reflect transgene behavior in the host environment. After removal of the insertion fragment by double digestion with various combinations of rest...

متن کامل

Differential requirements of the C terminus of Nbs1 in suppressing adenovirus DNA replication and promoting concatemer formation.

Adenoviruses (Ad) with the early region E4 deleted (E4-deleted virus) are defective for DNA replication and late protein synthesis. Infection with E4-deleted viruses results in activation of a DNA damage response, accumulation of cellular repair factors in foci at viral replication centers, and joining together of viral genomes into concatemers. The cellular DNA repair complex composed of Mre11...

متن کامل

Deletion of the E4 region of the genome produces adenovirus DNA concatemers.

Two mutants containing large deletions in the E4 region of the adenovirus genome H5dl366 (91.9-98.3 map units) and H2dl808 (93.0-97.1 map units) were used to investigate the role of E4 genes in adenovirus DNA synthesis. Infection of KB human epidermoid carcinoma cells with either mutant resulted in production of large concatemers of viral DNA. Only monomer viral genome forms were produced, howe...

متن کامل

Reactive oxygen species stimulate mitochondrial allele segregation toward homoplasmy in human cells

Mitochondria that contain a mixture of mutant and wild-type mitochondrial (mt) DNA copies are heteroplasmic. In humans, homoplasmy is restored during early oogenesis and reprogramming of somatic cells, but the mechanism of mt-allele segregation remains unknown. In budding yeast, homoplasmy is restored by head-to-tail concatemer formation in mother cells by reactive oxygen species (ROS)-induced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 68 2  شماره 

صفحات  -

تاریخ انتشار 1994